Doubly Stochastic Models with Threshold Garch Innovations
نویسندگان
چکیده
Recently, there has been a growing interest in the methods addressing volatility in computational finance and econometrics. Peiris et al. [8] have introduced doubly stochastic volatility models with GARCH innovations. Random coefficient autoregressive sequences are special case of doubly stochastic time series. In this paper, we consider some doubly stochastic stationary time series with GARCH and Threshold GARCH errors. Some general properties of process, like variance and kurtosis are derived.
منابع مشابه
Likelihood-based comparison of stable Paretian and competing models: Evidence from daily exchange rates
Considering alternative models for exchange rates has always been a central issue in applied research. Despite this fact, formal likelihood-based comparisons of competing models are extremely rare. In this paper, we apply the Bayesian marginal likelihood concept to compare GARCH, stable, stable GARCH, stochastic volatility, and a new stable Paretian stochastic volatility model for seven major c...
متن کاملJump Starting GARCH: Pricing Options with Jumps in Returns and Volatilities
This paper considers the pricing of options when there are jumps in the pricing kernel and correlated jumps in asset returns and volatilities. Our model nests Duan’s GARCH option models where conditional returns are constrained to being normal, as well as extends Merton’s jump-diffusion model by allowing return volatility to exhibit GARCH-like behavior. Empirical analysis on the S&P 500 index r...
متن کاملFrontiers in Time Series and Financial Econometrics: An Overview
Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time series analysis. The purpose of this special issue of the journal on “Frontiers in Time Series and Financial Econometrics” is to highl...
متن کاملThe Mean Variance Mixing Garch (1,1) Process a New Approach to Quantify Conditional Skewness
We present a general framework for a GARCH (1,1) type of process with innovations using a probability law of the mean-variance mixing type. We call the process the mean variance mixing GARCH (1,1) or MVM GARCH (1,1). One implication of this particular specification is a GARCH process with skewed innovations and constant mean dynamics. This is achieved without using a location parameter to compe...
متن کاملTHE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES A CLASS OF SEMIPARAMETRIC VOLATILITY MODELS WITH APPLICATIONS TO FINANCIAL TIME SERIES By
The autoregressive conditional heteroskedasticity (ARCH) and generalized autoregressive conditional heteroskedasticity (GARCH) models take the dependency of the conditional second moments. The idea behind ARCH/GARCH model is quite intuitive. For ARCH models, past squared innovations describes the present squared volatility. For GARCH models, both squared innovations and the past squared volatil...
متن کامل